

MULTIDIMENSIONAL NBS SYSTEMS

Kerta Kõiv Nils Kändler

Central Baltic Programme

MUSTBE

International Workshop Best practices of nature-based solutions for urban runoff management and treatment and pilots in Tallinn, Viimsi, Pori, Riga and Soderhamn

URBAN WATER SYSTEMS

KEY POINTS

- What is multidimensional nature-based solution (NBS)
- Survey on NBS multidimensionality
- **Example**: How to apply multidimensionality on planning of urban NBS

MULTIDIMENSIONAL NBS

Multidimensional in planning and implementing NBS means that except solving the primary benefit also receipt of co-benefits has been considered.

- Co-benefits for human health and well-being;
- integrated environmental performance (e.g., the provision of ecosystem services);
- trade-offs and synergies to biodiversity, health or economy;
- 4) potential for citizen's involvement in governance and monitoring

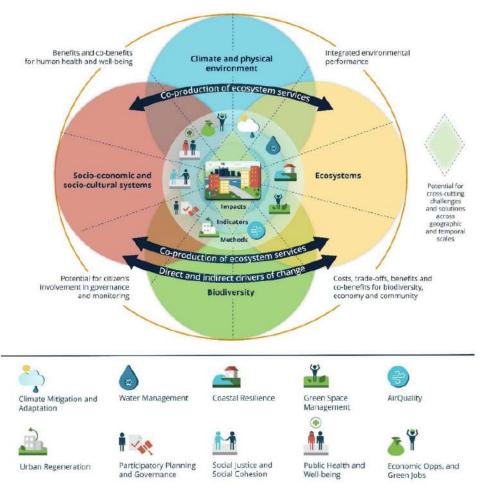


Figure 1: Four dimensions what are influenced by implementing NBS.

Source: A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas, 2017 https://doi.org/10.1016/j.envsci.2017.07 .008

MULTIDIMENSIONAL NBS IN URBAN AREAS

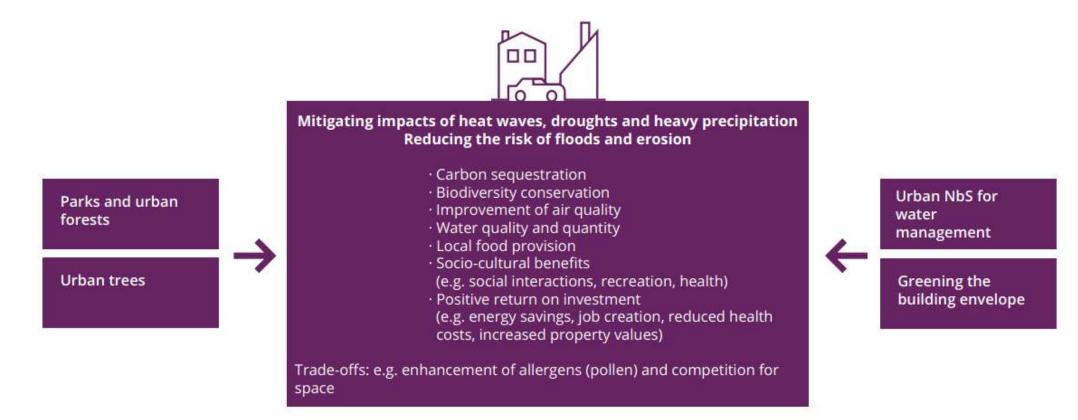


Figure 2: Key NBSs for addressing climate change impacts in urban areas and their multiple benefits and trade-offs Source: EEA report 2021, https://www.eea.europa.eu/publications/nature-based-solutions-in-europe

PLANNING MULTIDIMENSIONAL NBS

- Selecting benefits for multidimensional analysis NBSs -> main and co-benefits
- Various valuation methods
- The relationships between NBS measures and benefits should be characterized

Prioritizing significant co-benefits, characterizing their relationships with NBS measures, and applying appropriate valuation methods, a comprehensive multidimensional analysis of NBS benefits can be conducted to inform **decision-making processes** in flood risk management.

TOOLS:

- GIS analysis (Spatial Analysis)
- Stormwater system modelling

ANALYSIS OF PILOT CASES

Preliminary work:

Key performance indicators were determined.

Key performance indicator (KPI)	Definition
Flood risk	Rainfall intensity exceeding infiltration capacity (pluvial flooding) and high-water levels in river channels exceeding bank heights and/or causing dyke breach (fluvial flooding).
Biodiversity & green space provision	Decreasing biodiversity loss (restoration of the habitat of a specific species) by increasing green space land use instead of grey areas.
Public health and well-beingn	Providing green areas like parks where people can walk and spend free time (run, walk, picnic, etc)
Safety of operations	Operational safety is defined as the absence of unacceptable risks, injury or harm to the health of humans, whether direct or indirect, resulting from damage to equipment or the environment.
Urban heat	Reduce the average air temperature in the urban areas.
Environmental protection	Ensure better water, air and soil quality.
Material Efficiency	NBS implementation in the built environment: green building materials, systems for the greening of buildings, and green urban sites.
GHG emissions	Reduce (carbon dioxide Co2, metahne CH4 and nitrous oxide N2O) GHG emission. Primary sources of GHG are electricity and heat (31%), transportation (15%), agriculture (11%), manufacturing (12%) and forestry (6%).
Social use & cohesion	Social cohesion refers to the strength of relationships and the sense of solidarity among members of a community.

ANALYSIS OF PILOT CASES

Preliminary work:

Interviews and surveys conducted with the developers of the previous 23 pilot projects in four temperate climate zone countries of Europe, we have identified the primary and co-benefits.

			Prim	ary benefit					
	Flood risk	Biodiversity & green space provision	Public health and well- beingn	Safety of operations	Urban heat	Environmen- tal protection	Material Efficiency	GHG emissions	Social use cohesion
Project									
% off total project number	<mark>69.6</mark>	39.1	21.7	26.1	0.0	<mark>43.5</mark>	8.7	17.4	13.0
			Co	o-Benefit					
	Flood risk	Biodiversity & green space provision	Public health and well- beingn	Safety of operations	<mark>Urban heat</mark>	Environmen- tal protection	Material Efficiency	GHG emissions	Social use cohesion
Project									
% off total project number	30.4	60.9	<mark>78.3</mark>	39.1	<mark>78.3</mark>	47.8	34.8	13.0	65.2

ANALYSIS OF PILOT CASES

Preliminary work:

MUSTBE pilot project primary and co-benefits.

			Primar	y benefit					
	Flood risk	Biodiversity & green space provision	Public health and well-benign	Safety of operations	Urban heat	Environment protection	al Material Efficiency	GHG emissions	Social use & cohesion
Project									
Estonia–Viimsi		1							
Estonia - Tallinn							1		
Finland - Pori							1		
Finland - Kempinte							1		
Sweden - Borberg		1							
Sweden - Söderhamn							1		
Latvia - Riga							1		
% off total project number	28.6	0.0	0.0	0.0	0.0	71.4	0.0	0.0	0.0
			Co-B	enefit					
	Flood risk	Biodiversity & green space	Public health and	Safety of operations	Urban heat	Environmenta protection	al Material Efficiency	GHG emissions	Social use & cohesion
Project		provision	well-benign	·					
Estonia– Viimsi			1	1			1		
		1		1					
Estonia - Tallinn Finland - Pori			1	1					
Estonia - Tallinn			1	1					
Estonia - Tallinn Finland - Pori		1	1	_					
Estonia - Tallinn Finland - Pori Finland - Kempinte		1	1	1					
Estonia - Tallinn Finland - Pori Finland - Kempinte Sweden - Borberg		1	1	1		1			

TALLINN CASE

Main targets

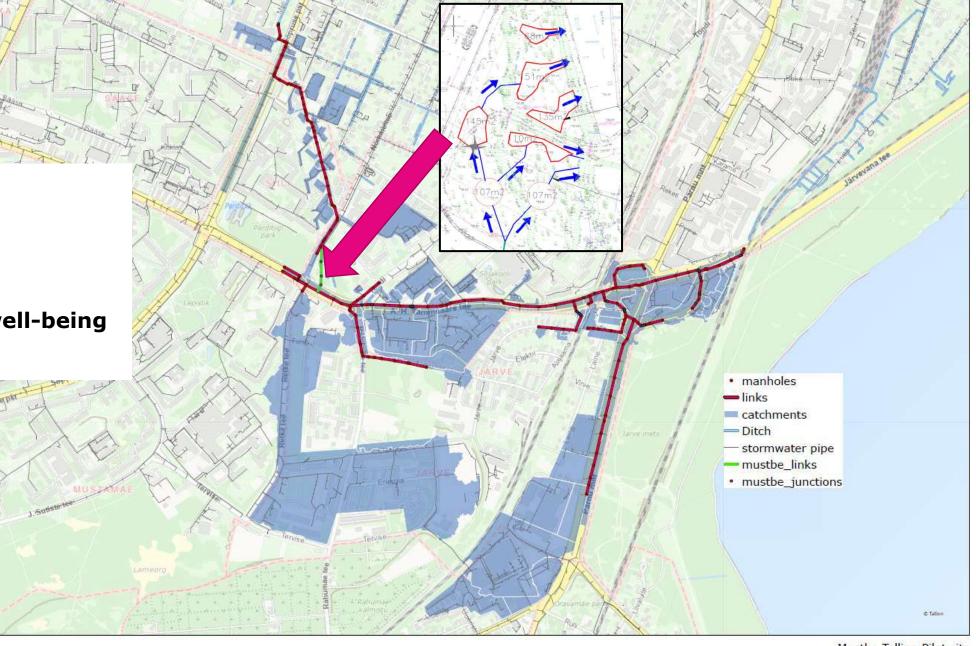
(1) Flooding risk

(2) Water quality

co-benefits:

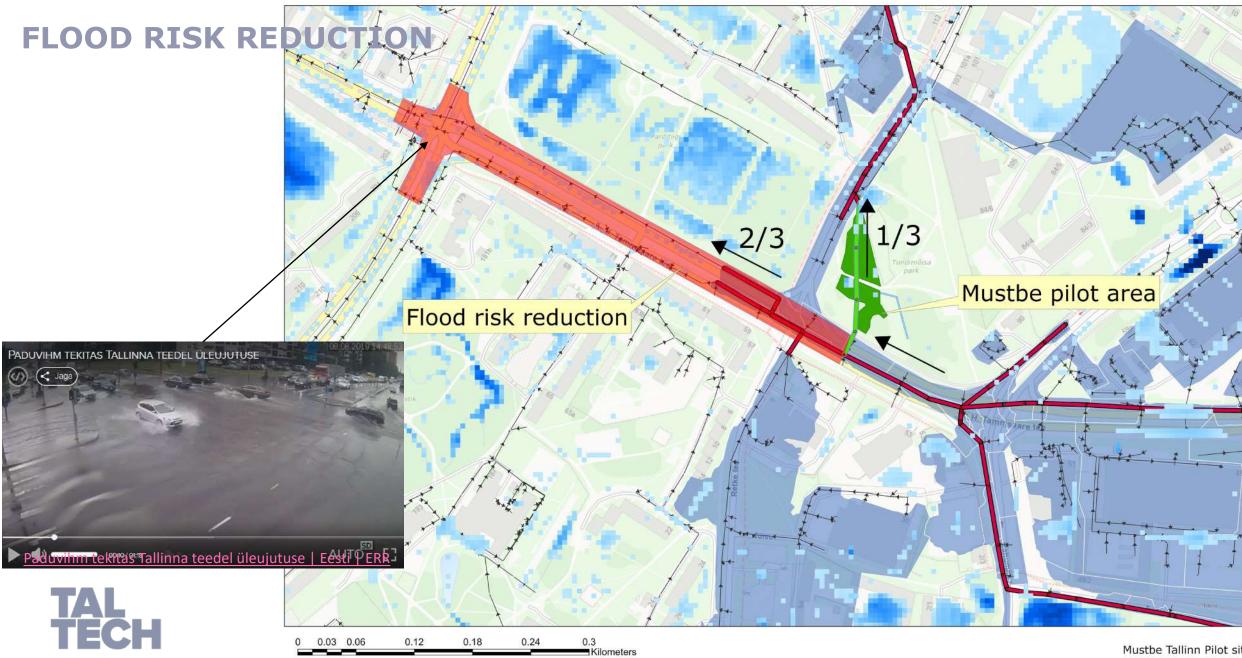
(3) Public health and well-being

0.1 0.2


0.6

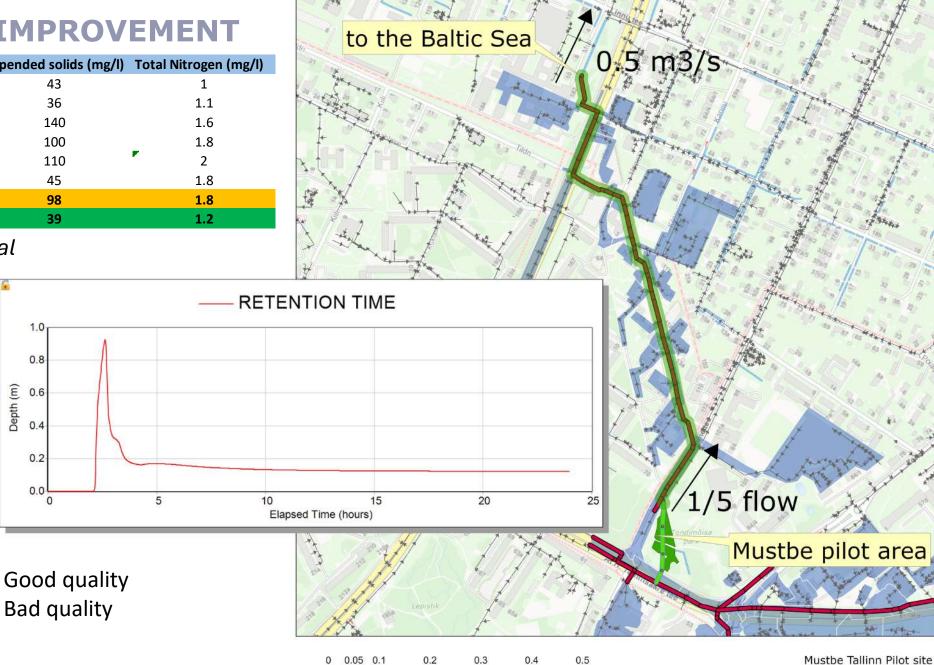
0.4

0.8


Kilometers

(4) Urban heat

Mustbe Tallinn Pilot site Stormwater model TalTech 23.02.2024


Mustbe Tallinn Pilot site Stormwater model TalTech 05.03.2024

WATER QUALTY IMPROVEMENT

Land use		Suspended solids (mg/l)	Total Nitrogen (mg/l)
Mixed green area		43	1
Grass area		36	1.1
Parking areas		140	1.6
Industrial area		100	1.8
Asphalt surface		110	2
Residential area		45	1.8
	baseline value	98	1.8
	target value	39	1.2

60% SS and 30% N removal

TAL TECH

Kilometers

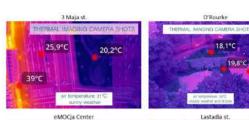
Stormwater model TalTech 05.03.2024

PUBLIC HEALTH AND WELL-BEING

Green space positive associations to physical activity and indirect to health at distances of 1100 m or less, with a peak at **600 m** for most indicators <u>https://doi.org/10.1016/j.envres.2023.117605</u>

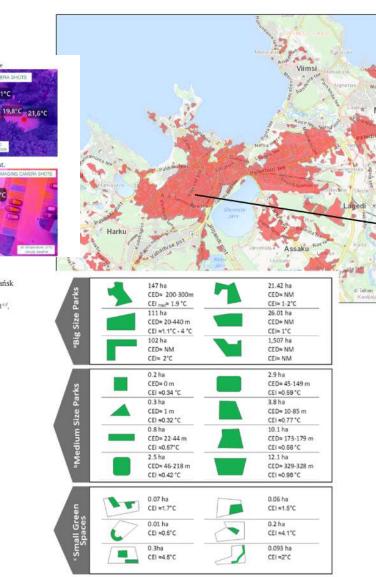
Health expenses per persion 124.4 EUR/year Affected persons 645*

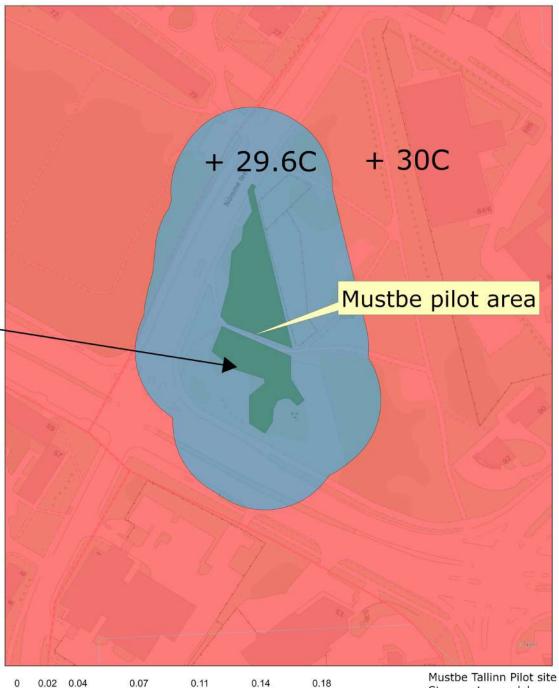
Health h expenses impacted by Mustbe pilot 80,168 EUR / year


(*) WHO green area availability suggestion 9 m²/person

Mustbe Tallinn Pilot sit Stormwater model TalTech 05.03.2024

HEAT ISLANDS




Technical solutions and benefits of introducing rain gardens - Gdańsk case study

Magda Kasprzyk ^{a,b,a}, Wojciech Szpakowski ^{c.d}, Eliza Poznańska ^c, Floris C. Boogaard ^{c.f}, Katarzyna Bobkowska ^{b,d}, Magdalena Gajewska ^{a,b}

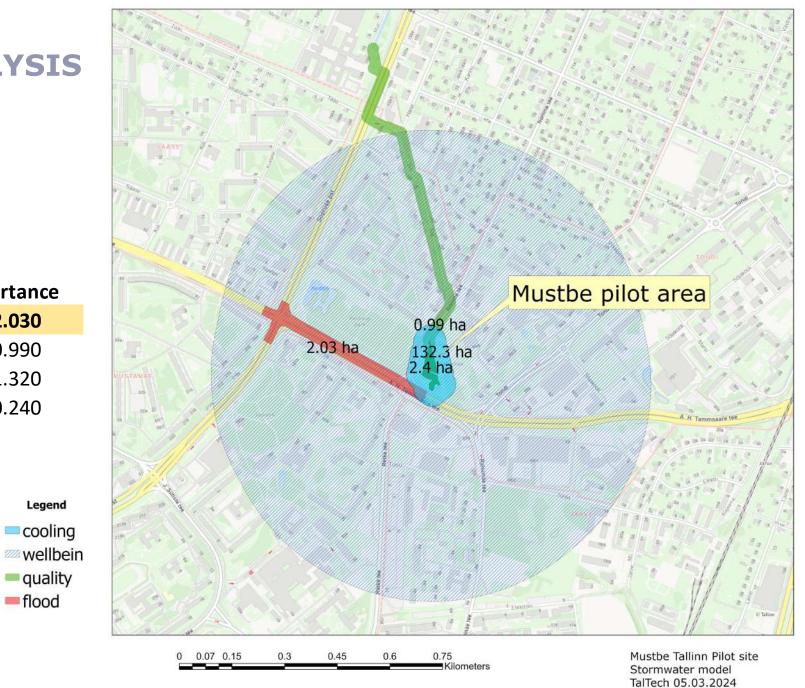
cooling effect intensity (CEI) and cooling effect distance (CED) https://doi.org/10.1016/j.heliyon.2019.e01339

Mustbe Tallinn Pilot s Stormwater model TalTech 05.03.2024

Kilometers

MULTI-OBJECTIVE ANALYSIS

- Pilot site = 0.5 ha •
- Impact area = 132 ha •


	impact_area	importance		
flood	2.03	1	2.030	
quality	0.99	1	0.990	
wellbeing	132	0.01	1.320	
heat	2.4	0.1	0.240	

Legend

cooling

quality

flood

DISCUSSION

