

Sustainable Flow



## **INTERREG CENTRAL BALTIC SUSTAINABLE FLOW PROJECT**

Secil Gülmez, Phd Post-doc Researcher Estonian Maritime Academy Tallinn University Of Technology



Sustainable Flow

## **CONCEPT OF ENERGY SAVINGS & RENEWABLE ENERGY TO CO2 REDUCTIONS IN PORTS**

Decision making part of the digital tool



## THE AIM OF THE WP2

 Reduction of CO2 emissions via energy savings and renewable energy in intermodal transport nodes and intermodal transport areas/systems, ports particularly.



Central Baltic Programme



## 2.1. CURRENT AND POTENTIAL ENERGY SAVINGS AND RENEWABLE ENERGY OF ALL PILOT NODES/AREAS



Central Baltic Programme

## Sustainable Flow





## 2.2. Assessment of environmental impact and greenhouse gas emissions

Assessment of environmental impact and greenhouse gas emissions in each pilot ports is done pilot pc





#### **Central Baltic Programme**

## Sustainable Flow

| Scope   | Emissions category                 | Amount of emissions | Percentage of total<br>carbon footprint |
|---------|------------------------------------|---------------------|-----------------------------------------|
|         |                                    | t CO2e              | %                                       |
| Scope 1 | Own car fleet                      | 32,77               | 0,51 %                                  |
| Scope 1 | Own cargo handling equipment       | 201,19              | 3,12 %                                  |
| Scope 1 | Own harbour craft                  | 0,00                | 0,00 %                                  |
| Scope 1 | Own stationary energy sources      | 0,00                | 0,00 %                                  |
| Scope 2 | Energy consumption                 | 510,82              | 7,92 %                                  |
| Scope 3 | Ocean-going vessels                | 3514,07             | 54,48 %                                 |
| Scope 3 | Harbour Craft                      | 2,57                | 0,04 %                                  |
| Scope 3 | Cargo handling equipment           | 1672,68             | 25,93 %                                 |
| Scope 3 | Rail transport                     | 57,64               | 0,89 %                                  |
| Scope 3 | Construction Equipment             | 0,00                | 0,00 %                                  |
| Scope 3 | Heavy road traffic                 | 453,33              | 7,03 %                                  |
| Scope 3 | Port operators' energy consumption | 5,62                | 0,09 %                                  |
| Scope 3 | Stationary energy sources          | 0,00                | 0,00 %                                  |
| Scope 3 | Employees' commuting               | 0,00                | 0,00 %                                  |
| Total   |                                    |                     |                                         |
| Scope 1 |                                    | 233,97              | 3,63 %                                  |
| Scope 2 |                                    | 510,82              | 7,92 %                                  |
| Scope 3 |                                    | 5 705,92            | 88,45 %                                 |
|         |                                    | 6450,70             | 100 %                                   |





# **2.3. A guidance tool for energy efficiency and Renewable energy for companies in the maritime cluster**

 A guidance tool is developed for energy efficiency and renewable energy for companies in the Maritime cluster to CO2 reductions, especially in actions on flow of goods. The guidance tool is based on **facts**, **lesson learnt and developed practices** in companies of the pilot ports





## **ACTIVITY 2.4 PESTEL ANALYSIS**

- PESTEL analysis (political, economic, societal, technological and ecological aspects) is done to pilot ports
- How to
- Prioritize technologies based on regulatory urgency
- Weight trade-offs between economic feasibility and environmental benefits
- Adapt recommendations based on real-world constraints such as funding availability, political support, or technological readiness.



#### Central Baltic Programme





## 2.5. ENVIRONMENTAL AND SUSTAINABILITY MEASURES IN SHIP-PORT INTERACTION AND SUSTAINABILITY IN TRANSPORT

 Analysis of environmental and sustainability measures in ship-port interaction is done and assessment on sustainability in transport





#### TALLINN UNIVERSITY OF TECHNOLOGY



#### **Central Baltic Programme**



## ACTIVITY 2.6 JOINT WORK ON INVESTMENTS IN PORTS

- Port of Mariehamn: Intalled
- The process for the rest of the ports are ongoing





Central Baltic Programme

## Sustainable Flow





## 2.7. A DECISION-MAKING TOOL FOR TARGET GROUPS FOR ENERGY SAVING MEASURES AND RENEWABLE ENERGY 1/2

## "What If" Tool



#### Central Baltic Programme





## 2.7. A DECISION-MAKING TOOL FOR TARGET GROUPS FOR ENERGY SAVING MEASURES AND RENEWABLE ENERGY 2/2

## "What If" Tool



#### **Central Baltic Programme**

## Sustainable Flow







Sustainable Flow



## **Thank You!**

Secil Gülmez, Phd Post-doc Researcher Estonian Maritime Academy Tallinn University Of Technology secil.gulmez@taltech.Ee