

Monitoring and measuring of NBS pilot sites

Central Baltic Programme

MUSTBE

Jurijs Kondratenko, RTU Water systems and biotechnology institute

MUSTBE project | NBS performance monitoring

Water quality analysis before and after NBS.

Real-time water quality sensing in the pilot sites.

Hydraulic and water quality and climate scenario modelling.

Online monitoring and visualisation system in project locations.

Cost-effective monitoring methods coupled with high resolution and low-resolution sensors for catchmentscale monitoring and control.

Understanding of future efficiency and sustainability of the test sites. Impact of the smart NBS compared to conventional treatment solutions.

Riga Technical University

	Total nutrients	Suspended solids	Pathogens	Hydro- carbons	Heavy metals	
Pre-interventio	on monitoring	Water level	Flow velocity	Rainfall	Post-intervent	tion monitoring

MUSTBE project Pilot sites

Rīga pilot site

- Šmeļupīte a small water stream collecting stormwater drainage from densely populated urban dwellings and industrial areas.
- Recreational green area
- Possible sewage influx
- Solutions: water flow stoppers, plants
- Sedimentation of suspended solids, nutrients and hazardous substance retention, organics degradation.

Goal: Improve water quality and the ecosystem services

Riga pilot site

	Suspended solids, mg/L	Total Nitrogen, mg/L	E-coli, CFU/100 ml	Hydrocarbons, mg/L	Metals, µg/L
Baseline values	80	3.5	4700*	<0.02	25
Target values	30	1.4	1880	<0.02	15

Rīga pilot site monitoring

- Rainfall events and dry weather periods
- Biochemical and Physical water quality
- Flow velocity and water level
- Sensors for pH, EC, temperature, turbidity, other
- Grab sampling for parameters Nutrients, Suspended solids, pathogens, metals and hydrocarbons.

Tallinn pilot site

- Järveotsa stream, flows into Harku lake, direct connection to the Baltic Sea
- used as headwaters for stormwater
- Catchment area
- under persistent real-estate development pressure – careful approach to avoid water quality degradation
- Poor water quality (WFD)

Goal: water quality improvement, technical requirements for the new developments

Tallinn pilot site

	Suspended solids, mg/L	Total Nitrogen, mg/L	E-coli, CFU/100 ml	Hydrocarbons, mg/L	Metals, µg/L
Baseline values	98	1,8	4700*	0,002*	93,4*
Target values	39	1,2	1880	0,001	56

Tallinn pilot site monitoring

- Real time monitoring of flow, temperature, turbidity, oil products, nitrogen
- Key parameters for water quality status improvement (Nutrients, Susp. Solids, BOD)
- Real time monitoring based water flow regulation for downstream water quality improvement

Riga Technical University

Viimsi pilot site

- NBS solution for stormwater retention and reuse, flood prevention
- Newly developed residential area, 0,35 ha
- Stormwater systems overwhelmed by high flowrates

Goal: Create a small park with ponds, rain gardens and fountain to reuse the retained stormwater

Viimsi pilot site

	Suspended solids, mg/L	Total Nitrogen, mg/L	E-coli, CFU/100 ml	Hydrocarbons, mg/L	Metals, μg/L
Baseline values	282	2	4700*	0,002*	93,4*
Target values	112	1,2	1880	0,001	56

*estimated from literature

Viimsi pilot site monitoring

- Outflows from NBS controlled in real time
- Real time water quality sensors will be installed: water level,flow, temperature, turbidity, electrical conductivity
- Manual sampling for nutrients, hazardous substances and toxin detection.

Söderhamn pilot sites

Söderhamnsporten

- New transportation hub railway, highways and connections to Söderhamn
- Currently undeveloped area with impermeable natural surfaces
- New streets, parking lots, building are planned with combination of amenity areas like parks and walkways
- Söderhamnsan river is passing the district affected by the stormwater runoff, impact to the the Baltic Sea

Broberg

- > New residential area is planned
- Highly affected by the sea-level rise
- Must reduce the impact to Baltic sea
- The multi-objective stormwater treatment solutions are aimed at reducing the inflows of nutrients, hazardous substances, plastics and toxins into the Baltic Sea

Söderhamn pilot sites

		Suspended solids, mg/L	Total Nitrogen, mg/L	E-coli, CFU/100 ml	Hydrocarbons, mg/L	Metals, µg/L
Baseline values	Söderhamnsporten	174	2.3	4700*	0,002*	93,4*
	Broberg	88	1.3	4700*	0,002*	93,4*
Target values	Söderhamnsporten	69	1.4	1880	0,001	56
	Broberg	35	0.8	1880	0,001	56

*estimated from literature

Soderhamn pilot sites monitoring

- The monitoring program focused on pH, nutrients, hazardous substances, plastics and toxins
- Combination automated measurements and manual sampling.
- Automatic measurement of pH, EC, DO, ammonium, nitrates, turbidity

Pori pilot sites

 The Wetland - 0.3 ha, catchment area - 83 ha. The catchment area - mostly of fields, the whole area is on acid sulphate soil.

Goal: Restore the wetland; prevent acidic waters runoff.

• **The Stormwater tree** solutions - implemented in tightly built area in Pori.

Goal: Provide shading, retain stormwaters for dry periods.

Pori pilot sites

		Suspended solids, mg/L	Total Nitrogen, mg/L	E-coli, CFU/100 ml	Hydrocarbons, mg/L	Metals, µg/L
Baseline values	Wetland	340	7.5	4700*	1.3	93,4*
	Tree tank	100	2	4700*	0.49	315
Target values	Wetland	136	5	1880	0.65	56
	Tree tank	40	1.4	1880	0.24	189

*estimated from literature

Pori pilot sites monitoring

Wetland

- Continuous measurement (pH, water temperature)
- Continuous discharge water measurement
- weather station measuring atmospheric pressure, precipitation, air temperature, wind and it`s direction, moisture
- > Manual sampling for nutrients and metals

Trees

- weather station
- > Overflow discharge
- > Soil moisture

Finalizing the NBS construction

Connecting real-time monitoring from all pilot sites to Online platforms for accessible monitoring data Synchronizing the monitoring methods for comparable results.

Thank you!

E-mail